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GRAVITY WAVE PROBLEMS. PART 2: STEADY NON-
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SUMMARY

A type of numerical scheme for 2D and 3D steady non-linear water wave problems is described. It is based
on the finite process method and is insensitive to initial solutions. The relationship between the finite process
method and iterative techniques is discussed. As a numerical example the flow past a submerged vortex is
solved and the results are compared with those of other authors.
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1. INTRODUCTION

Steady potential flow with a free surface is a typical non-linear problem. In 1977 Dawson! gave
a numerical scheme for ship wave problems which was based on the singularity distribution
method developed by Hess and Smith? in 1962. He distributed the simple singularities on the
surface of double-model ship and also on the limited region of the undisturbed free surface
around the ship. Linear free surface conditions were used and a type of four-point upwind
operator was applied to treat the radiation condition. Many researchers®~® have since expanded
the basic idea of Dawson to study water wave problems with non-linear free surface conditions.
In order to treat the non-linear free surface conditions, some of these used the perturbation
expansion technique and neglected the non-linear terms of perturbation in the non-linear free
surface conditions. In this way several iterative numerical schemes were given. However, as
mentioned by Macarthur,’® nearly all iterative formulae are sensitive not only to the initial
solutions but also to the number of unknowns.

In Reference 10 a type of general numerical method for non-linear problems, called the finite
process method (FPM), is described. Since it is based on continuous mapping, the FPM can
successfully avoid the use of iterative techniques and is insensitive not only to the initial solutions
but also to the number of unknowns. However, more CPU time is needed. In Reference 10
a numerical scheme for non-linear wave problems was derived and, as an example, the 2D
non-linear progressive gravity wave in shallow water was solved by means of a finite Fourier
series. The numerical results were in good agreement with those of other authors.

The present work is a continuation of Reference 10. The basic ideas given in Reference 10 are
expanded to give a type of numerical scheme for 2D and 3D steady potential flows with
non-linear free surface conditions. Instead of using finite Fourier series, simple sources (1/r for 3D
problems and Inr for 2D problems) are used. The relationship between the FPM and iterative
techniques is investigated.
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2. MATHEMATICAL DESCRIPTION

Steady water wave problems can be generally described by

V2¢(x,y,2)=0 inQ, n
with the non-linear free surface conditions
g9, +31VoV(VéVh)=0 on z={(x, y), 2
1
C=5(U2—V¢V¢) on z={(x, y) 3)
and the boundary condition on body dB
%1 o, @
on s

where ¢(x, y, z) is the velocity potential function, {(x, y) is the wave elevation, g is the gravi-
tational acceleration and U is the velocity of the body. The co-ordinate system Oxyz with
z positive upwards is moving at the same velocity U as the body.

For simplicity we define

R(P)=9¢.+1VPV(V4V9), )

f(¢)=§15(U2—V¢V¢). ©)

3. FINITE PROCESS METHOD

One can find two continuous functions f;(p) and f,(p) in pe[0, 1], called first- and second-type
process functions respectively, which satisfy

0 when p=0,

f1(P)={ 1 when p=1, (7
_ {1 when p=0,
fZ(p)_{ 0 when p=1. @®)

Then a continuous mapping ¢(x, y, 2)—>d(x, y, z; p), {(x, y)={(x, y; p), Q—Q(p) can be ob-
tained as

V2$(x,y, 2z p)=0 in Q(p), ©
with boundary conditions
L1(D)R(®) +12(p)[R($)—R(Po)]=0 on z={(x, y; p), (10)
{0x, y; D) =f1(P)Z () +12(p)o(x, y) on z={(x,y;p), (11
Sy, 5p) (12)
on oB

where {y(x, y) is an initial wave elevation and ¢(x, y, z) is an initial velocity potential function
which satisfies

VZo(x, y,2)=0 in Q, (13)
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and the boundary condition

o =0 (14)
If p=0, then f,(p)=0 and f,(p)=1. Hence from (9)-(12) one has the initial equation
V2¢(x,y,2z;0)=0 in Q(0), (15)
with boundary conditions
R(P)=R($o) on z={(x, y; 0), (16)
{(x, y; 0)="Lolx, ¥) on z={(x, y; 0), (17
___6¢(be »50) =0 (18)

Let {(x, y; 0)={o(x, y); then (17) is satisfied. It is interesting that ¢,(x, y, z) determined by (13)
and (14) is just the solution of initial equation (15), (16) and (18); therefore

¢(x, ¥, 2 0)=o(x, y, 2), (19
{x, y; 0)=Lo(x, y) (20)
Q(0)=0Q,. @

When p=1, f;(p)=1 and f,(p)=0. Hence from (9)—(12) one obtains the final equation
V2¢(x, y,z; 1)=0 in Q(1), (22)

with boundary conditions

A($)=0 on z={(x, y; 1), (23)
{x, , )=2Z(¢) onz={(x,y1), (24)
———-6‘1’("’6{1’ 51 =0 (25)

The final equations (22)—(25) are just the same as the original equations (1)-(4) respectively.
Suppose the solutions of the original equations (1)—(4) are ¢(x, y, z) and (¢(x, ), called the final
solutions. Then one has the relations

¢f(xa s Z)=¢(X, ¥,z 1)7 (26)
Celx, yy=0(x, y; 1). @7

From the above analysis one can see that the continuous mapping determined by (9)—(12) gives
relations between the selected initial solutions ¢o(x, y, z) and {o(x, y) and the final solutions
¢e(x, ¥, z) and {¢(x, y) which can be described in the form of integrals as

¢f(x’ A Z)=¢(X, y, Z; 1)

1
=¢(x, 5,2 0)+ J ¢"M(x, y, z; p)dp
0

1
=do(x, y,2)+ f ¢™M(x, y, z; p)dp, (28)
0
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Lelx, =L, 33 D)
1
={(x, 5 0)+L {M(x, y; p)dp

1

={o(x, y)+f0 {M(x, y; p)dp, (29)

where
S, , 2 p)zw (30)

£ b 9 ap
and
(190 y; p = D) 6D
p

are first-order partial derivatives of ¢(x, y, z; p) and {(x, y; p) with respect to p respectively.

For simplicity call equations (9)—(12) the zero-order process equations, the continuous map-
pings ¢(x, y, z; p) and {(x, y; p) the zero-order processes of the velocity potential function and
wave elevation respectively and ¢!*)(x, y, z; p) and {1*1(x, y; p) the first-order process derivatives of
o(x, y, z; p) and {(x, y; p) respectively.

The first-order process derivatives ¢!')(x, y, z; p) and (!!)(x, y; p) can be obtained in the
following way.

Deriving (9) and (12) with respect to p, one obtains

—( 24)=V? (a¢) V241=0  in Q(p), (32)
a¢[1] 3
Tl =0 (33)

Deriving equation (10) with respect to p, one has

dz (4>)

F(PRD) +f (D) [R(S)— RPN+ Lf1(P) +2(p)] ———=0 onz={(x,y;p)  (34)

In the same way, deriving (11) with respect to p, one obtains

(90, 33 P)=F{(P) Z () +1:(p) ("”

+£f2(p)o(x, y) on z={(x, y;p). (35)

Because the wave elevation z={(x, y; p) is also a function of p, one has

dz 692+69? oz 6@ o0AR
dp dp Oz 6p 6p 0z
dz oz +6£” 0z _ 655’ 0z
d op 0z op ap 9z
Substituting (37) into (35), one obtains

{M(x, y; p) _fiDZd(x y, z DI +/3(D)o(x, 1) +/1 (D) 0Z [ (x, 3, 23 P) }/Op
s Y3 1—£,(0)oZ [¢(x, y, 2 p)1/0z

— on z={(x, y; p), (36)

— (i on z={(x, y; p). (37

on z={(x, y; p).
(38)
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Substituting (36) and (38) into (34), one obtains

%@Jrfl(p)y(cﬁ; p) %§= T (¢;p) om z={(x, y; p), (39)
P P
where

OR[P(x, ¥, z; p)]/0z
1—-f1(p)oZ [¢(x, y, z; p))/0Oz

(DR [¢o(x, y, 2)1—LSf{(D) +/2(PI2[P(x, ), 2, )]

Lo, y,zp) pl= on z={(x, y; p), (40)

T¢(x, y, 2 p p1 ="

fi(p)+/f2(p)
—F[$(x v, 2 0% PY{FI(D)Z [ (x. y, 2z DI +S2(P) o lx, 1)}
on z={(x, y; p). (41)
For simplicity, selecting f; (p)=p, f>(p)=1—p and substituting
%?=g¢[2”+%V¢[”V(V¢V¢)+V¢V(V¢V¢[“), 42)
0Z __Vovel 43)
dp g
and
o Vev4,
% g (44)
into (38) and (39), one has the equations of ¢*X(x, y, z; p) and {*)(x, y; p) as follows:
g9+ 1VUIV (V) + Vv (Vo) 2L PP )chbqu‘”
= —R(Po)— L (¢d; P[Z (D)~ o(x, )] on z={(x,y; p), (45)
{11 . _5(¢)~Co(x, y)-—de)Vd?m/g _ .
{tHix, y; p)= 1+ VoVl on z={(x, y; p), (46)
where
. 0R/0z _ )
(¢ D=1 veve e ToVeves O z={(x, y; ). 47)

The system consisting of equations (32), (33), (45) and (46) is linear with respect to ¢!*)(x, y, z; p)
and {(x, y; p). If ¢(x, y, z; p) and {(x, y; p) are known, then ¢!')(x, , z; p) and {!!)(x, y; p) can be
obtained by solving this system of linear equations. Thus ¢(x, y, z; p+Ap) and {(x, y; p+ Ap) can
be obtained by using the Runge-Kutta method in the process domain pe[0, 1] as follows:

O(x, v, 2, p+AP)=(x, y, z; p) + &(ky +2ky + 2k3 + ky), (48)
{(x, y; p+AP)=L(x, y; p)+E(my +2m, +2m3 +my), (49)

where
ky=Apd"  @(x, y, z; p), {(x, y; p); P, (50

m; =AplM[ ¢(x, y, z; p), {(x, ¥; P); ) (51
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ky=App™i[o(x, y, z; p)+ k1 /2, {(x, y; p)+m1/2; p+Ap/2], (52)
my =Apl™[d(x, y, 23 P)+k1/2, {(x, y; P)+my /2, p+Ap/2], (53)
ky=Apd™iLo(x, y, z; p)+k2/2, {(x, y; p)+m3/2; p+Ap/2], (54)
ms =AplMI[d(x, , 23 p)+ka/2, { (X, y; p)+m2/2; p+Ap/2], (55)
ka=ApdtI[o(x, y, z; p)+ ks, {(x, y; p)+m3; p+Ap], (56)
ms=Ap{" [ $(x, y, 2, P)+ ks, {(x, y; p)+m3; p+Ap]. (57

Note that the final results are obtained at p=1.

4. SIMPLE NUMERICAL EXAMPLES

The 2D potential flow past a submerged vortex is a simple but typical non-linear problem.* As
shown in Figure 1, the vortex is submerged at (0, —b) with circulation I'. Upstream there exists
a uniform stream with velocity U. Downstream there exists a steady wave with wavelength 4,,. In
the case of finite water depth, Salvesen and Kerczek!! solved this problem by an iterative finite
difference technique and compared their numerical results with their perturbation solutions in
deep water. Similarly to Salvesen and Kerczek,'! we select a uniform stream velocity U =10 fts ™!
and a vortex submergence b=45 ft,f but the water depth is infinite so that more rigorous
comparison with perturbation solutions in deep water can be made.

Similarly to Jensen et al.,® we use the singularity distribution method to solve the correspond-
ing equations (32), (33), (45) and (46). The simple sources In r are distributed continuously at
a distance h, above the undisturbed water surface in the limited region AB: x, <x <x, shown in

Figure 1. We select hy> (., = U?/2g in order to let the simple sources on AB be always above the
wave elevation.

TN ON -1 g4 03 0 Ty
4 e p

z
hs

¢(z)
|
—T—/ I

~— U

b

kJ‘BF

Figure 1. Co-ordinate system and grid for numerical computation

* We have two reasons for selecting this problem as an example even though it seems too simple from the viewpoint of
engineering. First, the main purpose of this paper is to examine the basic idea of a type of numerical method. Secondly,
there exist detailed numerical results for this problem given by other authors so that comparisons can be made.

+ For ease of comparison with the results of Reference 11 we use the British system of units, where 1 ft=0-3048 m and
11b=0-454 kg.
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The treatment of the radiation condition seems even more difficult than that of the non-linear
free surface conditions. Several numerical techniques (or, more precisely, several numerical arts)
have been used to treat the radiation condition. The method used in Reference 6 seems efficient
and very simple, although its mathematical meaning is not very clear. In this paper we use the
same technique as given in Reference 6 to treat the radiation condition, i.e.

§i=xi—5x (i=1,2,3,...,N),

where (x;, {;) are co-ordinates of points on the wave elevation, (¢;, h,) are co-ordinates of points
on AB and dx=]x;—x;,,| is a selected constant.

Using
r r —b
¢0(xs Z)=—Ux+_tan_1 Eib— ——tan—l i__ (58)
2n X 2n X

as the initial velocity potential function and {,(x}=0 as the initial wave elevation, the correspond-
ing continuous mapping ¢(x, z; p) can be described as

X

o(x, z; p)= po(x, Z)+J ’ (& b PIn{/T(x— & +(z—h,)* 1} d&

Xa

=¢0(x’ Z)+ Z (p(x—ém3 Z)O-m(p)a (59)
m=1

where 0,(p)=0(Em, hs; p) (m=1,2, . .., N). Then the first-order process derivatives ¢t'l(x, z; p)
can be expressed as

X

M(x, z; p)=J ) o, g pIn{/L(x— & +(z—h,)* 1} d¢

Xa

N
=Y o(x—Em 2)R(p). (60)
m=1

Clearly, ¢')(x, z; p) described above satisfies (32).
From expression (60) one easily obtains

oHx, 2 p)= él @<(x—E&m, 2)at(p), (61)
M (x, z; p)=m§1 @=(x—&m> 2ok (D), (62)
PL(x, z; p) =m‘; Pxx(X —Ems 2)05(p), (63)
PLNx, 7 p)= mIZ:ZI Pxz (X —Em, 205 (p). (64)

Substituting (61)—(64) in (45), one obtains the set of linear algebraic equations of
ol (m=1,2,..., N) as follows:

E(p)a'!(p)=t(p). (65)



1180 S. J. LIAO

Here
E(p={e;(p)} (Gj=12...,N)
a'(p)={ohl(p)} (m=12,...,N)
(p)={Tuwp} m=12...,N)

with

e;j(p)=by(x:, zi; P)@<(xi—&;, 2:) + balxi, 255 Pl (xi— &5, 2:)
+b3(xi, 2i; P) @xx(Xi— &y 20) +balXi, 205 P) P (x:— &5y 2:)  On 2;={(x;; p), (66)

where
bi(x, 2, p)=2(PxPsx+ ¢:0x:)—pL (d; P)b:/g  on z=((x; p), (67)
ba(x, z; P) =g+ 2(@xPx:— . 0x:) — DS (&; P)p-/g o0 z={(x; p), (68)
bs(x, z,p)=¢i—¢2 onz={(x;p), (69
by(x, z; p)=2¢.¢. on z={(x;p), (70)
T (D)= —RLD0(Xms Zm)1—F [ (Xms Zm3 DY PI{Z [ (Xms> Zms P)]—Lo(Xm)}
on z,={(x,;p) (mM=1,2,...,N). (71)

We solve the set of linear algebraic equations (65) by the Gauss—Jordan elimination method.
After ¢!*!(x, z; p) is known, {!')(x; p) can be easily obtained from expression (46). Note that
¢(x, z; p+ Ap) and {(x; p+ Ap) are obtained by the Runge-Kutta method, shown as expressions
48)-(57).

The final solution ¢¢(x, z) is

X

br(x, 2)=do(x, Z)+f "oe, h)ln {\/[(x— & +(—h,)*1} d¢

Xa

= —Ux+¢*(x, 2), (72
where
o= | (e i pidp @)
or, more precisely,
6e(Em» hs)=J:J1 o(p)dp (m=1,2,..., N). (74)

Note that the o,(p+Ap) (m=1,2, ..., N) are also obtained by the Runge—Kutta method.
Let

ax gl8e(xi)—Z ()l

(ed)max= m U2 on z;= Cf(xi) (75)
1<i<N
and
(€ )max = max (2P0 on zi=Le(x) (76)

1<isy 9U
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denote the maximum non-dimensional errors of the non-linear dynamic and kinematic free
surface conditions respectively.

The exact wave resistance formula for two-dimensional potential flow, neglecting surface
tension, is'?

{(xo0)
R,=3p j {[d¥(x0, 2)1* ~[P*(x0, 2)1* }dz+3gp(% (xo), W
where the plane x =x, may be taken at any distance behind the submerged vortex, i.e. xo <0. R,,
can be obtained by numerical integral.

As a test computation let us consider the flow past the submerged vortex I'/2rn =220 ft>s™?,
corresponding to a strong non-linear problem.

Select h,=1-6 ft, N =80, x, = —2:51¢ and x, =1-51, where i, =2nU 2/g=19-54 ft. The corres-
ponding maximum initial errors are (exo)max =31 X 10™2 and (€40 )max =0-1. The results obtained
for different values of Ap are given in Table L

It is clear from Table I that the smaller Ap is, the more accurate the numerical results are. In the
case Ap=0-1 the numerical results appear to be accurate enough. This means that sufficiently
accurate results can be obtained by the FPM if a small enough value of Ap is used. Thus no
iterative techniques are needed, although more CPU time will be used.

Using the FPM, reasonable and accurate numerical results can be obtained in the region
—649<T2n <25 t2s57 L,

For simplicity we have selected in this paper f;(p)=p and f,(p)=1—p. Clearly, there exists
many other process functions, e.g.

Sulp)=sin™ (%) (m>1), fz(p>=cosm(%’—‘) m=1)
or

fHip)=p", f(p)=(1—p)".

Using these process functions in our computer programme, we obtain a similar result, i.e. the
smaller Ap is, the more accurate the numerical results are.

5. RELATIONSHIP BETWEEN FINITE PROCESS METHOD AND ITERATION

Consider the zero-order process equations (9)—(12). Clearly, the initial solutions ¢, (x, z) and {4(x)
can be freely selected. If ¢o(x, z) and {(x) are just the true solutions of the original problem, then
according to the first-order process equations (32), (33), (45) and (46), ¢'')(x, z; p)=0 and

Table I. Numerical results for different values of Ap

Ap Cmax () Cmin (1) 4w (ft) R, (Ibft™1) (x)max (ea)max

1 09342 —0-7201 183512 94341 1-6x 1072 81x1073
1/2 09314 —07289 18-3613 9-5473 25%1073 16x 1073
1/5 09329 —~07301 18-3651 9-5787 55x%107+ 1-5x 107+
1/10 09334 —~0-7301 18:3644 9-5789 75x107* 12x107°
1/20 0:9334 —~0-7301 18-3644 9-5778 11x107° 78x 1077
1/50 09334 —07301 18-3644 9-5774 48x1077 26x 107"

1/100 09334 —-0-7301 18-3644 9-5774 35x1078 77x107°
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{")(x; p)=0. However, at the beginning of the computation the solutions are unknown and we
must select initial solutions which may be far from the accurate solutions. The general form of the
initial solution ¢¢(x, z) can be written as

r —
¢o(X,Z)=—Ux+——tan’1(ﬁ'_b)_itanq(Z b)
2n x 2n x

+ ij oo(& h)ln{/[(x— & +(z—h,)?1} d¢ (78)

Xa

The corresponding final solution ¢¢(x, z) is now

ddx, z)= — Ux+£— tan~! <Z+b>_£tan“1 (i__b>
2n X

27 b
+ f oel&, h)In{\/[(x— & +(z—h)?1} d¢, (79)
where "
o¢(&, h)=00(¢, h)+ f )&, hg; p)dp (80)
or, more clearly,
O¢(&ms hs) =00 (Em> hs).-l-L1 dll(pydp (m=1,2,..., N). (81)

At the beginning of the computation select a4(&, h,)=0 and {o(x)=0 to make a computation
under a selected Ap. If Ap is small enough, the results are sufficiently accurate, which can be used
as the solution of the original problem. If Ap is not small enough, then crude results o (&, ) and
{¥(x) are obtained. Although o¥(¢, h) and (¥(x) are not accurate enough, they are clearly much
better than the selected initial solutions oo(&, h)=0 and {y(x)=0. Clearly, better numerical
results will be obtained if o¥ (¢, h,) and {¥(x) are used as new initial solutions to make a new
computation. This is in fact just the idea of iteration. From the view point of this, expressions

Table I1. Iterations for different values of Ap

Ap Iterations Cmsx(ft} Cmin (ﬁ) }‘w (ft) Rw (lb ft_ 1) (ek)max (ed)max
1 09341 —0:7201 18:3512 9-4341 1.6 x 1072 81x1073
1 2 0-9334 —0-7301 18-:3644 9-5774 36x107° 43x1078
3 09334 —0-7301 18-3644 95774 27x1071%  22x10713
4 0-9334 —07301 18-:3644 9-5774 81x1071%  22x10716
1 09329 —-07301 18-3651 9-5787 55x1074 15x1074
0-2 2 09334 —0:7301 18-:3644 9-5774 41x10712  99x1071?
3 09334 —0-7301 18-3644 95774 12x1071%  47x10716
4 09334 —0-7301 18-:3644 9-5774 83x10716 29x10°16
1 09334 —0-7301 18-:3644 9:5774 75% 1073 12x1073
0.1 2 09334 —-07301 18-3644 9-5774 1'1x107'2  60x10713
3 09334 —-0:7301 18-3644 9-5774 93x10716  4.5x10716
4 09334 —-0-7301 18-3644 9-5774 93x1071%  45x10716
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given by the FPM for different values of Ap will give different iterative formulae. The smaller Ap
is, the more complex the corresponding iterative formulae are. Clearly, the formulae in the case
Ap=1 are the simplest of them.

We use the same example described in the previous section to show this point. At the beginning
of the computation let o4(&, h,)=0 and {,(x)=0. The new results obtained are used as initial
solutions to make the next computation. Different values of Ap (Ap=1, 0-2 and O'1) are
considered. The results are given in Table II.

From Table IT it seems that the iterations for each value of Ap will converge. The more complex
the iterative formulae are (i.e. the smaller Ap is), the faster the iteratation converges, but clearly
more CPU time is needed.

It is interesting that if Ap is small enough, the numerical results will be accurate enough and no
iteration is needed. Thus we can regard iterations as special cases of the FPM for large Ap.

There exist some other iterative formulae for non-linear water wave problems. The formulae
given by Jensen et gl.% are as follows:

9¢.+3VPV(VOVD) + VOV(VOV — VOVD)
+(8/az)[g<l>z+%V<DV(V<DV(D)]
g+Vvovo,

[3(U?—-2VOVe + VOV®)— gl ] =0, (82)

LU - 2VOVe + VOVD) — gl

t=lot g+ VOVD, ’

(83)

where ® and {, are old values and ¢ and { are new values.

Let us compare the above iterative formulae with the simplest ones given by the FPM in the
case Ap=1. It is well known that iterations are generally sensitive to the initial solutions and will
diverge in some cases of strong non-linearity. The convergence region, the numerical maximum
wave elevation (far downstream) and the maximum slope obtained by the different formulae are
given in Table III.

According to Table III, the iterative formulae given by the FPM in the case Ap=1 have
a greater region of convergence than the iterative formulae (82) and (83). Note that Ap=1
corresponds to the simplest case. In fact, the smaller Ap is, the more insensitive the corresponding
iterative formulae are to the initial solutions.

Clearly, it is easy to use the basic ideas of the FPM to derive a family of iterative formulae for
any reasonable non-linear problem, among which the simplest is in the case Ap=1 and more
complex formulae correspond to smaller Ap. If Ap is small enough, then the numerical results are
accurate enough and no iteration is needed, although more CPU time is required.

In fact, the iterative formulae (82) and (83) can also be obtained from expressions (45) and (46).

Table III. Convergence regions for different iterative formulae

Convergence region { max Max. slope
Tterative model (ft>s™1) (ft) (deg)
FPM (Ap=1) —~649<T/2r<2:45 1-206 23-0

Reference 6 ~588<T/2n<213 1-066 19-8
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In (45) and (46) let p=1 and substitute ¢, and ¢ by ®; then one has

VOV oR(0)/0z

[11 4 1 1} {11y __
9oL +VGUIV(VOVE) + VOV (VOV ) ——— T

= — ()

S.J. LIAO

[Z(®@)—{o(x, y)102(®)/0z

1+ Vove, /g

2

(84)

Table IV. Maximum and minimum wave elevation (far downstream) for U=10fts™! and b=45ft

Third-order
perturbation 11

Numerical results

Reference 11

Present method

I'/2n
(ftz $” 1) Cmax (ft) Cmin (ft) Cmax (ft) Cmin (ft) {max (ft) Cmin (ft)
-3-20 0-544 —0-511 0-64 —0-58 0-558 —0438
~-270 0-495 ~0-339 0-60 —0-54 0-553 —0436
—2:10 0-440 ~0:335 0-50 —047 0-497 —~0-401
~1-70 0-390 —0-326 0-43 —040 0-466 —0-382
—1-40 0-341 —0-298 0-37 —035 0-369 —0317
—115 0-293 —-0-263 0-30 —0-29 0-312 —0275
—090 0239 —-0220 0-25 -024 0250 -0-226
0-90 0-308 —0-281 0-29 ~-0-28 0-305 0280
1-15 0-409 -0361 0-38 —0:36 0-406 —0362
1-40 0517 —0-440 0-47 —044 0-514 —0445
1-70 0-655 —0-534 0-59 —0-54 0-659 —0-548
220 0-908 —0-685 084 -072 0:959 -0729
270 1-187 —0-848 1-24 -093 t T
320 1-495 —~1082 + + T ¥

1 No convergence.

Table V. Wavelength (ft) (far downstream) for U=10fts™!

and b=4-5ft
Third-order Numerical results
I2n perturbation
ft*s™1) method!!  Reference 11  Present method
~320 17-73 192 18-82
—-270 1824 193 18-83
210 1875 194 1896
170 19-02 19-5 19-11
—140 19-18 19-5 1923
—115 19-30 19-5 19-32
—0-90 19-39 196 1940
090 19-39 196 19-40
115 19-30 19-5 1929
1-40 19-18 19:5 19-14
170 19-02 19-1 18-89
2:20 18-67 18-8 1826
270 18-24 180 i
320 17-73 T ¥

+ No convergence.
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1 Z @) —Lo(x, y) - VOVelg
14+ VOV, /g

From the above expressions, substituting ¢!* by ¢ —® and {1 by { —{, respectively, one can
obtain the same formulae as (82) and (83).

¢

@5)

6. COMPARISON WITH OTHER RESULTS

In the case U=10fts ™! and b=4-5 ft the 2D deep waves past a submerged vortex are researched
by the numerical scheme described above. The numerical parameters used are x,/Ao= —3-5,
Xp/Ao =15, hy=1-6 ft and N =200.

Table VI. Wave resistance (Ib ft *) of 2D waves past a submerged vortex for U=10fts™ ! and b=4-5ft

Perturbation results!! Numerical results
I'/2n
ft2s™Y First-order Second-order Third-order Reference 11  Present method
—-3-20 1392 1040 4-04 5-53 3-616
—-2-70 991 7-00 2:61 491 3-597
~2-10 599 413 2:26 354 3011
—-1-70 393 267 194 2:55 2:367
—1-40 2:66 1-94 1-55 191 1-809
~-115 1-80 1-37 1-19 1-36 1-333
-090 1-10 0-88 0-81 0-88 0-384
090 1-10 141 1-33 1-22 1321
115 1-80 2-48 223 208 2:251
1-40 2:66 395 3-40 315 3476
1-70 393 634 510 4-84 5351
1-90 491 838 640 619 6894
2:20 658 12:23 857 873 9642
2-50 849 1717 10:96 1176 T
2-70 991 21-15 12:66 1404 ¥
320 1392 33.97 1697 ¥ T

t No convergence.

Table VII. 2D wave (far downstream) past a submerged vortex for U=10fts ' and b=45 ft

I/2r (2 s™1) Cmax (1) Lin (1) Max. slope (deg) Ay (1) R, (bft1)
—649 0199 ~0172 36 19-64 0526
—64 0163 ~0-140 28 1970 0329
—60 0-004 ~0-002 05 t 0010
-50 0268 —~0217 46 1917 0-863
—47 0346 ~0278 59 1912 1425
-37 0523 ~0:412 90 1888 3180
230 1-039 ~0767 192 1807 10-690
2:40 1-144 ~0792 215 1768 11728
2:45 1-206 —0825 230 17-64 12388
2:50 1316 ~0-848 258 17:37 12:942

+ No numerical value of wavelength because of the too small wave height downstream.
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The maximum and minimum wave elevation, wavelength (downstream) and wave resistance
for different values of the vortex circulation I'/2n are given in Tables IV-VI respectively. The
perturbation solutions is the third-order approximation for deep waves and the numerical results
in finite water depth given in Reference 11 are also listed for comparison. The converged results
for I'2n< —3-2ft2s™" and I'/2n>22 ft2s ™! are given in Table VIL

From Tables IV-VII it seems that for |I'/2n|<1-7ft?s™! the results given by the FPM,
especially for the wavelength, are in better agreement with the perturbation solutions in he
third-order approximation than with the numerical results given in Reference 11. For
[T'/2m|>1-7 ft* s~* we obtain results which are considerably different not only from the perturba-
tion solutions in the third-order approximation but also from the numerical results given in

Table VIII. Maximum and minimum wave elevation and maximum slope of first crest

T2n (ft2s™ 1) — 649 —64 —60 -50 —4-7 —37 -32 —-27
{imax (1) 1-459 1-441 1:372 1-230 1-184 1-006 0-901 0-786
{min (1) -0147 —0-115 0000 —0160 —0229 —0-385 —0419 —-0424
Max. slope (deg) 297 258 217 17-5 166 14:3 131 117
I'/2r (ft2s™1) -21 -19 17 —14 -1-15 —09 09 1-15
Lonax (1) 0-633 0-579 0-523 0-436 0-362 0-285 0-302 0-401
{min (1) —-0394 —0376 -—-0353 —-0313 —-0272 —-0224 —-0299 —0385
Max. slope (deg) 9-8 89 81 69 58 4-6 55 72
27 (ft2s™1) 1-40 1-70 1-90 2:20 2-30 2-40 245 2-50
Limax () 0-509 0652 0-759 0-881 0-950 1-029 1-191 1-291
Lonin () -0472 —0578 —0650 —-0724 0762 —0799 -—-0857 —0-878
Max. slope (deg) 92 117 137 161 17-4 19-17 227 25-1
o
[44]
{ o7
(U?/2g)
o
I
=]
T
o —
—
we
Lo
L] \
>
<g
== (?’_
o
@
< T T T T T T I I T | x
-3.50 -2.50 -1.50 -0.50 0.50 1.50

WAVE-LENGTH DIRECTION

Figure 2. Wave elevation of 2D waves past positive circulations for U = 10fts™!, b = 4-5 ft and infinite water depth.
Cmsx increases with increasing I'/2n = 0:90, 1:70, 2:10, 2-30 and 245 ft?s~!
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Reference 11. It seems that perturbation solutions to a higher order of approximation should be
given for flows with stronger non-linearity. Also, it seems that the water depth has a great
influence on 2D waves past a submerged vortex, especially on their wavelength.

The maximum and minimum wave elevation and the maximum slope of the first crest are given
in Table VIIL In the case of positive circulations the height of the first crest is nearly the same as
those far downstream, but in the case of negative circulations the first crest is always higher.

Figures 2 and 3 show the wave elevation for different values of circulation. For positive
circulations the elevation height of the first crest is nearly the same as those far downstream and
all of them increase with increasing vortex circulation until the limit status is reached. For
negative circulations the wave height of the first crest is always greater than those far downstream
and increases with decreasing vortex circulation, whereas {,,,, far downstream has a crest value
near I'/2n=—321ft>s~! and a trough value at I'/2n= —6ft>s~! as shown in Figure 3. At
I'/2n= —6ft>s~* the height of the wave elevation far downstream is so small that it is nearly an
isolated wave. In the case of negative circulations the maximum wave slope and maximum wave

L 6as00
2n

r_ 6-0000
n

r_ 5-2000
2

r_ 3-7000
m
£=—1’4000
2n

AVAVAVASS

Figure 3. Wave elevation of 2D waves past negative circulations for U = 10fts ™!, b = 4-5 ft and infinite water depth.
From bottom to top the corresponding circulations are I'/2z = — 14, — 37, — 52, —60and — 6:45ft2s™?
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elevation far downstream are much less than the theoretical limits. It is clear from Figure 3 that
wave breaking will occur when the first crest is too high. According to the experiment of
Salvensen,'® wave breaking occurs at the first crest. Our numerical results support his experi-
ment.

Stokes!* !5 showed that the limiting form of steady irrotational gravity waves possesses sharp
crests containing an angle of 120°, i.e. a maximum slope of 30°. The limit of free surface elevation
is

Lim=U?/2g,

ie. for U=101ts !, {;;, =154 ft.

Table IX. Steepest elevation (far downstream) of 2D deep gravity waves

Numerical results

Theory Experiment'® Reference 11 Present method
Cim U?/2g 0-82U2%/2g 087U 2%/2g 085U %/2g
Max. slope (deg) 30 25 244 25-8
(Ho/Aw)max 0-141-0-145 011 012 0125
@~"~ numerical results by FPM
A~--~ third-order perturbation results
o 4+~-" numerical results given in [11]
e
D
_.*_J
G- ]
~o
0ne
o -
OCJ
cCo
0 g
S
n
No
(GRS
|
o
S T
0o
=C & I_
o I [ T I ¥ 2
-7 .00 -5.00 -3.00 -1.00 1.00 3.00
vortex

Figure 4. Wave resistance of 2D waves past a submerged vortex for U = 10fts™! and b =45 ft
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The maximum ratio of wave height to length, H,/4,, is given by Michell'® as 0-142, by
Thomas!” as 0-145 and by Schwartz'® as 0-141-0-142. The experiment by Salvensen!? gives the
maximum H,/A,=0-11 for downstream waves, while the numerical maximum value given in
Reference 11 is H, /A, =0-12.

In the case U=10fts~! and b=45 ft the limit wave elevation is obtained at I[/2n=2-5fts™?,
with {.,=1-316 ft, maximum H,/4,=0-125 and maximum slope 25-8°. In comparison with
Reference 11 we obtain a little steeper wave elevation as shown as Table IX. The limiting form of
wave elevation for negative circulation is obtained in the case of I'/2n= —649 ft2s~ !, with the
first crest {nax=1-459 ft and maximum slope 29-7°, while the wave elevation far downstream is
much more even. It is interesting that the limiting form of wave elevation for negative circulation
is very different from that for positive circulation, as shown in Figures 2 and 3.

Figure 4 shows the wave resistance in the case U=10fts™ ' and b=45 ft. For I'>0 the wave
resistance increases with increasing vortex circulation, but for I' < 0 the curve of wave resistance is
very different; there exist a crest and also a trough in the region of negative circulation. At
I/2n=—6ft*s™! the wave resistance is nearly zero, while the corresponding wave elevation is
nearly an isolated wave. For I'/2r < —6 ft>s ™! the wave resistance increases until the first crest of
wave clevation is too high and then numerical wave breaking occurs. These very interesting
results have not been reported in Reference 11.

Similarly to the wave resistance, the wavelengths in the case of negative circulations are also
considerably different from those in the case of positive circulations, as shown in Figure 5. For

@M--~ numerical results by FPM

A~--- 3th-order perturbation results
o 4+~~~ numerical results given in [11]
=
o
N

T T I 1 ]

T I ] I I
-7.00 -5.00 -3.00 -1.00 1.00 3.00
vortex

Figure 5. Wavelength of 2D waves past a submerged vortex for U = 10fts~! and b = 45 ft
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positive circulation the wavelength always decreases with increasing vortex circulation. For
negative circulation the wavelength decreases at first but begins to increase later. This result is
interesting.

The wave resistance is nearly zero in the case I'/2z= —6 ft*> s~ *. Perhaps more attention should
be paid to this interesting result, which can be obtained by the FPM but not by the iterative
formulae (82) and (83). We know that a 2D submerged wing or streamlined foil can be substituted
approximately by a submerged vortex. Thus it seems that the wave resistance of a submerged 2D
wing or streamlined foil might be zero in some cases. Are there any applications of this result in
engineering if it also holds true for a 3D wing or streamlined foil? Could we use submerged wings
or streamlined foils in the fore of a ship to reduce its wave resistance? Clearly a submerged vortex
is too crude a model for a submerged 3D wing or streamlined foil. 3D models close to practical
problems should be used in order to obtain more accurate results with practical meaning, and
naturally experiments should be done. It seems valuable to investigate this problem thoroughly.

7. DISCUSSION AND CONCLUSION

The basic idea of the finite process method is to discretize an original non-linear problem into
a finite number of linear problems in a continuous mapping domain pe[0,1]. The finer this
discretization is, i.e. the smaller Ap is, the more accurate the numerical results are. If Ap is small
enough, then the numerical results are accurate enough, but clearly more CPU time is needed. In
this way we can avoid the use of iterative techniques to solve non-linear problems.

On the other hand, the formulae of the FPM at any definite values of Ap=1/n, can also be used
as iterative formulae. This gives a family of iterative models. The smaller Ap is, the more complex
but more insensitive to initial solutions the corresponding iterative formulae are. If Ap is small
enough, then the results are accurate enough and no iteration is needed. Thus we can regard
iterative formulae as special cases of the FPM for large Ap.

Every method has its good and bad points: simpler iterative formulae are more sensitive to
initial solutions; on the other hand, more complex formulae need more CPU time. For weak
non-linear problems, simpler formulae with large Ap, e.g. Ap=1 or 0-5, can be used. However, for
more strongly non-linear problems, formulae with smaller Ap seem be needed in order to obtain
converged results, and naturally more CPU time is needed in these cases. It seems that we must
make more effort for strongly non-linear problems.
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APPENDIX: NOMENCLATURE

(€4)max maximum non-dimensional error of dynamic condition of free surface
(€ Jmax maximum non-dimensional error of kinematic condition of free surface
filp first-type process function defined by expression (7)

2{p) second-type process function defined by expression (8)

g gravitational acceleration
Zp(x, y, 2)] auxiliary function defined by expression (6)
H, wave height
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r process-independent variable
Rld(x, y,2)] auxiliary function defined by expression (5)
R, wave resistance given by expression (77)

F{o(x, v, z; p); p] auxiliary function defined by expression (40}
T [¢(x, y, z; p); p] auxiliary function defined by expression (41)

U

velocity of body

Greek letters

b(x, y, 2) velocity potential function

bo(x, v, 2) initial velocity potential function

o¢(x, v, 2) final velocity potential function

Plx, y, z; p) mapping of ¢(x, y, z), called zero-order process of ¢(x, y, z)
dM(x, v p) first-order process derivatives of ¢(x, y, z; p)

{(x, ») wave elevation

Lolx, y) initial wave elevation

Le(x, y) final wave elevation

{(x, y; p) mapping of {(x, y), called zero-order process of {(x, y)
{Mx, y; p) first-order process derivatives of {(x, y; p)

Q fluid domain

10.
11.

12.
13.

14,
15.
16.
17.
18.
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